S_lion's Studio

走近分布式一致性协议(下篇)

字数统计: 2.9k阅读时长: 10 min
2021/08/14 Share
上篇简述了几种一致性协议(二阶段提交、三阶段提交、paxos和zab)的实现原理与优缺点,这篇了解下raft与复制状态机。

Raft协议

类似于zookeeper的zab协议(Paxos算法),Raft也是用于保证分布式环境下多节点数据的一致性,但更易于理解。

在Raft体系中,有一个强leader,由它全权负责接收客户端的请求命令,并将命令作为日志条目赋值给其他服务器,在确认安全的时候,将日志命令提交执行。当leader故障时,会选举产生一个新的leader。在强leader的帮助下,Raft将一致性问题分解为了三个子问题:

  1. leader选举:当已有的leader故障时必须选出一个新的leader。
  2. 日志复制:leader接受来自客户端的命令,记录为日志,并复制给集群中的其他服务器,并强制其他节点的日志与leader保持一致。
  3. 安全措施:通过一些措施确保系统的安全性,如确保所有状态机按照相同顺序执行相同命令的措施。

Raft基本流程

一个Raft集群拥有多个奇数台服务器,我们一般是三台,这样可以容忍一台服务器出现故障。服务器可能会处于如下三种角色:领导者(leader)、候选人(candidate)、跟随者(follower),正常运行的情况下,会有一个leader,其他全为follower,follower只会响应leader和candidate的请求,而客户端的请求则全部由leader处理,即使有客户端请求了一个follower也会将请求重定向到leader。candidate代表候选人,出现在选举leader阶段,选举成功后candidate将会成为新的leader。可能出现的状态转换关系如下图:

从图中可以看出,集群刚启动时,所有节点都是follower,之后在time out信号的驱使下,follower会转变成candidate去拉取选票,获得大多数选票后就会成为leader,这时候如果其他候选人发现了新的leader已经诞生,就会自动转变为follower;而如果另一个time out信号发出时,还没有选举出leader,将会重新开始一次新的选举。可见,time out信号是促使角色转换得关键因素,类似于操作系统中得中断信号。

term

在Raft协议中,将时间分成了一些任意长度的时间片,称为term,term使用连续递增的编号的进行识别。

每一个term都从新的选举开始,candidate们会努力争取称为leader。一旦获胜,它就会在剩余的term时间内保持leader状态。

term也起到了系统中逻辑时钟的作用,每一个server都存储了当前term编号,在server之间进行交流的时候就会带有该编号,如果一个server的编号小于另一个的,那么它会将自己的编号更新为较大的那一个;如果leader或者candidate发现自己的编号不是最新的了,就会自动转变为follower;如果接收到的请求的term编号小于自己的当前term将会拒绝执行。

rpc

server之间的交流是通过RPC进行的。只需要实现两种RPC就能构建一个基本的Raft集群:

  • RequestVote RPC:它由选举过程中的candidate发起,用于拉取选票
  • AppendEntries RPC:它由leader发起,用于复制日志或者发送心跳信号。

每个Raft节点将会根据自己节点的状态数据来对这两种RPC请求进行处理,我们先看一下每个Raft节点保存那些状态数据:

Leader选举

Raft通过心跳机制发起leader选举。节点都是从follower状态开始的,如果收到了来自leader或candidate的RPC,那它就保持follower状态,避免争抢成为candidate。Leader会发送空的AppendEntries RPC作为心跳信号来确立自己的地位,(心跳间隔时间)如果follower一段时间(选举超时时间)没有收到心跳,它就会认为leader已经挂了,发起新的一轮选举。

选举发起后,一个follower会增加自己的当前term编号并转变为candidate。它会首先投自己一票,然后向其他所有节点并行发起RequestVote RPC,之后candidate状态将可能发生如下三种变化:

  • 赢得选举称为leader: 如果它在一个term内收到了大多数的选票,将会在接下的剩余term时间内称为leader,然后就可以通过发送心跳确立自己的地位。(每一个server在一个term内只能投一张选票,并且按照先到先得的原则投出)
  • 其他server称为leader:在等待投票时,可能会收到其他server发出AppendEntries RPC心跳信号,说明其他leader已经产生了。这时通过比较自己的term编号和RPC过来的term编号,如果比对方大,说明leader的term过期了,就会拒绝该RPC,并继续保持候选人身份; 如果对方编号不比自己小,则承认对方的地位,转为follower。
  • 选票被瓜分,选举失败:如果没有candidate获取大多数选票, 则没有leader产生, candidate们等待超时后发起另一轮选举。为了防止下一次选票还被瓜分,必须采取一些额外的措施, raft采用随机election timeout的机制防止选票被持续瓜分。通过将timeout随机设为一段区间上的某个值, 因此很大概率会有某个candidate率先超时然后赢得大部分选票.(随机重试机制)

日志复制

一旦leader被选举成功,就可以对客户端提供服务了。客户端提交每一条命令都会被按顺序记录到leader的日志中,每一条命令都包含term编号和顺序索引,然后向其他节点并行发送AppendEntries RPC用以复制命令(如果命令丢失会不断重发),当复制成功也就是大多数节点成功复制后,leader就会提交命令,即执行该命令并且将执行结果返回客户端,raft保证已经提交的命令最终也会被其他节点成功执行。leader会保存有当前已经提交的最高日志编号。顺序性确保了相同日志索引处的命令是相同的,而且之前的命令也是相同的。当发送AppendEntries RPC时,会包含leader上一条刚处理过的命令,接收节点如果发现上一条命令不匹配,就会拒绝执行。

安全措施

  • 日志复制原则

    在Raft中,leader通过强制follower复制自己的日志来解决日志不一致的情形,那么冲突的日志将会被重写。为了让日志一致,先找到最新的一致的那条日志,然后把follower之后的日志全部删除,leader再把自己在那之后的日志一股脑推送给follower,这样就实现了一致。而寻找该条日志,可以通过AppendEntries RPC,该RPC中包含着下一次要执行的命令索引(nextIndex),如果能和follower的当前索引对上,那就执行,否则拒绝,然后leader将会逐次递减索引,直到找到相同的那条日志。

  • 选举约束

    比如某个follower在leader提交时宕机了,也就是少了几条命令,然后它又经过选举成了新的leader,这样它就会强制其他follower跟自己一样,使得其他节点上刚刚提交的命令被删除,导致客户端提交的一些命令被丢失了,raft的解决办法:Raft通过投票过程确保只有拥有全部已提交日志的candidate能成为leader。由于candidate为了拉选票需要通过RequestVote RPC联系其他节点,而之前提交的命令至少会存在于其中某一个节点上,因此只要candidate的日志至少和其他大部分节点的一样新就可以了, follower如果收到了不如自己新的candidate的RPC,就会将其丢弃。

  • 如果命令已经被复制到了大部分节点上,但是还没来的及提交就崩溃了,这样后来的leader应该完成之前term未完成的提交. Raft通过让leader统计当前term内还未提交的命令已经被复制的数量是否半数以上, 然后进行提交。

日志压缩

随着日志大小的增长,会占用更多的内存空间,处理起来也会耗费更多的时间,对系统的可用性造成影响,因此必须想办法压缩日志大小。Snapshotting是最简单的压缩方法,系统的全部状态会写入一个snapshot保存起来,然后丢弃截止到snapshot时间点之前的所有日志。Raft中的snapshot内容如下图所示:

每一个server都有自己的snapshot,它只保存当前状态,如上图中的当前状态为x=0,y=9,而last included index和last included term代表snapshot之前最新的命令,用于AppendEntries的状态检查。

虽然每一个server都保存有自己的snapshot,但是当follower严重落后于leader时,leader需要把自己的snapshot发送给follower加快同步,此时用到了一个新的RPC:InstallSnapshot RPC。follower收到snapshot时,需要决定如何处理自己的日志,如果收到的snapshot包含有更新的信息,它将丢弃自己已有的日志,按snapshot更新自己的状态,RPC的定义如下:

复制状态机模型

当同一份数据存在多个副本的时候,怎么管理他们就成了重点。

复制状态机(Repilcated State Machine,RSM)的基本思想是一个分布式的复制状态机系统由多个复制单元组成,每个复制单元均是一个状态机,它的状态保存在一组状态变量中,状态机的状态能够并且只能通过外部命令来改变。(比paxos提出的时间都早,可以算是一致性协议的方法论了)

“一组状态变量”通常是基于操作日志来实现的,每一个复制单元存储一个包含一系列指令的日志,并且严格按照顺序逐条执行日志上的指令。

上图是一个复制状态机的实现,每个RSM都有一个replicated log,存储的是来自客户端的commands。每个RSM中replicate log中commads的顺序都是相同的,状态机按顺序处理replicate log中的command,并将处理的结果返回给客户端。由于状态机具有确定性,因此每个状态机的输出和状态都是相同的。

一致性模块(Consensus Module)用于保证每个server上Log的一致性!

如果不做任何保障,直接将commad暴力写入,一旦服务器宕机或者出现什么其他故障,就会导致这个Log丢失,并且无法恢复。而出现故障的可能性是很高的,这就导致系统不可用。

复制状态机它有一个很重要的性质——确定性

如果两个相同的、确定性的状态从同一状态开始,并且以相同的顺序获得相同的输入,那么这两个状态机将会生成相同的输出,并且结束在相同的状态

GFS、HDFS、zookeeper和etcd等分布式系统都是基于复制状态机模型实现的。

CATALOG
  1. 1. Raft协议
    1. 1.1. Raft基本流程
    2. 1.2. Leader选举
    3. 1.3. 日志复制
    4. 1.4. 安全措施
    5. 1.5. 日志压缩
  • 复制状态机模型